[2.0.2.0]Metacyclophane-1,15-diynes. A Potential Fragment of Double-Helical Conjugated Systems

Keiichiro Utsumi, Takeshi Kawase,* and Masaji Oda*

Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043

(Received January 31, 2003; CL-030095)

The title cyclophanes as a potential fragment of doublehelical π -conjugated system were synthesized, and the spectroscopic and crystallographic characterization shows the strained nature of the π -system; variable-temperature NMR spectra also reveal that the cyclophanes exist as an equilibrium mixture between the *meso-* and *dl*-forms in solution.

Double-helical molecules are of great interest because of their unique structures as well as potential applications in optics and electronics; therefore, synthetic chemists have been interested in the double-helical arylacetylene oligomers.¹ The combination of the cyclophanes **1** and **2** may construct a half pitch of the double-helical oligomers. Although the cyclophane **2** has been synthesized by Staab's group 30 years ago,² **1** has remained unknown. Recently we have synthesized several macrocyclic cyclophanes with strained acetylenic bonds using the McMurry coupling as a key step, and studied the molecular functions based on the novel structures.^{3,4} Here we report the synthesis, properties and the molecular structure of **1**.

The cyclophanes **1** have two possible diastereomers, *meso*and *dl*-form owing to two asymmetric axes of the biphenyl units. The semiempirical calculation (AM-1)⁵ predicts the distorted structures of **1** with bent triple bonds (*meso*-**1a**; 162.4°, *dl*-**1a**; 162.4°, *meso*-**1b**; 163.6°, and *dl*-**1b**; 163.7°). The introduction of four methoxy groups seems to induce the further deformation not to the acetylenic bonds but to the aromatic rings (twisted angle of biphenyl units: *meso*-**1a**; 29.5°, *dl*-**1a**; 30.0°, *meso*-**1b**; 38.7°, and *dl*-**1b**; 39.9°). The calculation also predicts that the diastereomers have small differences in the heat of formation ($\Delta H_f = 0.04$ kcal/mol for **1a**, and $\Delta H_f = -0.34$ kcal/mol for **1b**).⁶ Thus, **1** may exist as an equilibrium mixture in solution.

Scheme 1 outlines the synthesis of **1**. Thus, the McMurry coupling of 3,3'-biphenyldicarbaldehydes **3**⁷ afforded the corresponding [2.0.2.0]metacyclophanedienes **4** in better yields than the known synthesis using the bis-Wittig reaction (**4a**: 4%).⁸ Bromination and dehydrobromination of **4** led to the cyclophanes **1**⁹ as stable crystalline substances in moderate yields.

Good single crystals of **1b** for X-ray analysis were obtained from *p*-xylene and chlorobenzene solutions, respectively. The latter crystal includes the solvent molecule with 1:1 ratio,¹⁰ while the former has no inclusion.¹¹ The structural analyses using these crystals reveal that **1b** adopts a *meso*-form with considerably distorted triple bonds. Figure 1 shows the molecular structure of **1b** in the crystal from *p*-xylene. The bond angles of acetylenic carbons (av 160.8° for *p*-xylene and 159.9° for chlorobenzene) are about 13° smaller than those of **2** (173.8°),^{2b} and almost comparable to those of [2.2.2]metacyclophanetriyne (av 158.6°).^{4b} And the obseved twisted angles of biphenyl units (40.2° for *p*-xylene and 38.8° for chlorobenzene) are almost consistent with those of the calculation.

Table 1 shows the selected spectral data of **1a** and **1b** together with those of the reference compounds **5a** and **5b**.¹² In comparison with **5**, **1** exhibit relatively broad absorption bands and bathochromic shift in fluorescence spectra probably due to the distorted structures.^{4d} The ¹H- and ¹³C NMR spectra of **1** show the expected simple pattern in agreement with the high symmetry of the molecule at 30 °C. The considerably low field shifts of the sp carbons also indicate the highly strained nature of the cyclophanes.⁴ Although the crystal analyses indicate that **1b** adopts the *meso*-form alone in crystal, variable-temperature NMR experiments reveal that **1b** exists in an equilibrium mixture between *meso*- and *dl*-forms in solution (Figure 2). The signals of

Scheme 1. Synthetic route to 1a and 1b.

Copyright © 2003 The Chemical Society of Japan

		1a	5a	1b	5b
¹ H NMR ^a	H _d	8.51	7.79	7.79	7.40
¹³ C NMR ^a	sp carbon	99.3	89.5°	97.6	88.0 ^c
Longest absorption max.	nm $(\log \epsilon)^b$	282 (4.45)	284 (4.78)	292 (4.70)	297 (4.86)
Emission max. ^b	nm	349	333	367	359

Table 1. Selected spectral data of tolanophane 1a-b and reference 5a-b

^aδ in CDCl₃. ^bIn CH₂Cl₂. ^cAveraged value.

Figure 1. Crystal structure of **1b**. Top: Plan view; bottom: Side view (ORTEP; 50% probability). Selected bond angles and torsion angles (°): C1–C2–C3 160.5(3); C13–C15–C16 161.0(3); C2–C3–C8 115.8(2); C8–C7–C9 117.4(2); C2–C3–C8–C7 163.7(3); C4–C3–C8–C7 7.0(4); C6–C7–C9–C10 54.0(4); C8–C7–C9–C14 40.2(4).

the aromatic protons begin broadening at around $-40 \,^{\circ}$ C, and become two sets of three signals at $-60 \,^{\circ}$ C (major : minor = ca. 5 : 1, ΔG^{\ddagger} = ca. 12 kcal/mol, $T_c = -50 \,^{\circ}$ C). The assignment of the major component in solution is hardly determinable because of the structural similarity between both diastereomers. Although the parent compound **1a** did not show the similar spliting even at $-100 \,^{\circ}$ C, the cyclophane would be in equilibrium between two diastereomers with relatively low energy barrier than that of **1b**.

In conclusion, the cyclophanes **1** exist in two inter-changeable diastereomers in spite of the highly strained structure. The energy barrier would be controllable by introducing appropriate substituents on aromatic rings. Thus, the system would be a potential pigment for construction of dynamic chirality sensors¹⁴ as well as a component of double-helical conjugated systems.

This work was supported by Grant-in-Aids for Scientific Research (No. 14654112 and 14340197) from Ministry of Education, Science, Sports and Culture, Japan.

References and Notes

- a) M. J. Marsella, I. T. Kim, and F. Tham, *J. Am. Chem. Soc.*, **122**, 974 (2000).
 b) D. L. An, T. Nakano, A. Orita, and J. Otera, *Angew. Chem., Int. Ed.*, **41**, 171 (2002).
- 2 a) H. A. Staab, E. Wehinger, and W. Thorwart, *Chem. Ber.*, 105, 2290 (1972).
 b) H. Irngartinger, *Chem. Ber.*, 106, 761 (1973).
- 3 For a review of macrocyclic cyclophanes see: G. J. Bodwell and T. Satou, *Angew. Chem., Int. Ed.*, **41**, 4003 (2002).
- 4 a) T. Kawase, H. R. Darabi, and M. Oda, *Angew. Chem., Int. Ed.*, 35, 2664 (1996). b) T. Kawase, N. Ueda, and M. Oda, *Tetrahedron Lett.*, 38, 6681 (1997). c) T. Kawase, Y. Hosokawa, H. Kurata, and M. Oda, *Chem. Lett.*, 1999, 845. d) T. Kawase, N. Ueda, K. Tanaka, Y. Seirai, and M. Oda, *Tetrahedron Lett.*, 42, 5509 (2001).
- 5 M. J. S. Dewar, E. G. Zoebisch, E. F. Healy, and J. J. P. Stewart, *J. Am. Chem. Soc.*, **107**, 3902 (1985).
- 6 $\Delta H_{\rm f}$ represents the difference of the calculated heat of formations $(H_{\rm f})$; $\Delta H_{\rm f} = (H_{\rm f} \text{ of } meso\text{-form}) (H_{\rm f} \text{ of } dl\text{-form}).$
- 3a: M. Lourak, R. Vanderesse, Y. Fort, and P. Caubère, *J. Org. Chem.*, 54, 4840 (1989); 3b: E. Fujita and K. Tanaka, *J. Chem. Soc. C*, 1971, 205.
- 8 B. Thulin and O. Wennerström, *Tetrahedron Lett.*, **18**, 929 (1977).
- [2.0.2.0]metacyclophane-1,15-diyne (1a); Colorless plates (from toluene), decomp 280 °C; MS (EI, 70 eV) m/z (rel. int.) 352 (100, M⁺); ¹H NMR (270 MHz, CDCl₃, δ): 7.29 (4H, ddd, J = 7.6, 1.6, 1.0 Hz), 7.45 (4H, dd, J = 7.8, 7.6 Hz), 7.71 (4H, ddd, J = 7.8, 2.0, 1.0 Hz), 8.51 (4H, dd, J = 2.0, 1.6 Hz); ¹³C NMR (68 MHz, CDCl₃, δ): 99.3, 124.7, 125.1, 125.7, 129.4, 135.7, 138.2; UV (CH₂Cl₂) λ_{max} (log ε) 228 (4.14), 282 (4.45), 306 nm (3.98); Fluorescence (CH₂Cl₂) λ_{\max} 349 nm. 6,10,20,24-Tetramethoxy[2.0.2.0]metacyclophane-1,15-diyne (1b); Colorless prisms (from *p*-xylene), decomp 270 °C; MS (EI, 70 eV) m/z (rel. int.) 472 (100, M⁺); ¹H NMR (270 MHz, CDCl₃, δ): 3.89 (12H, s), 6.89 (4H, d, J = 8.6 Hz), 7.25 (4H, dd, J = 8.6, 2.2 Hz, 7.79 (4H, d, J = 2.2 Hz); ¹³C NMR (68 MHz, CDCl₃, δ): 56.0, 97.6, 111.4, 117.2, 127.4, 128.3, 141.1, 157.2; UV $(CH_2Cl_2) \lambda_{max}$ (log ϵ) 230 (4.72), 292 nm (4.70); Fluorescence $(CH_2Cl_2) \lambda_{max} 367 \text{ nm.}$
- 10 Crystal data for **1b**·C₆H₅Cl: C₃₈H₂₉O₄Cl, $M_r = 585.09$; Orthorhombic, *Pnnm* (#58), a = 7.379(1) Å, b = 12.295(2) Å, c = 16.918(4) Å, V = 1534.8(10) Å³, Z = 2, D = 1.266 g cm⁻³; $R_1 = 0.077$. The data were deposited in Cambridge Crystallographic Data Center (CCDC 204617).
- 11 Crystal data for **1b**: $C_{32}H_{24}O_4$, $M_r = 472.53$; Monoclinic, P_{21}/c (#14), a = 10.407(1) Å, b = 14.374(2) Å, c = 8.212(1) Å, $\beta = 102.25(1)^\circ$, V = 1200.4(3) Å³, Z = 2, D = 1.307 g cm⁻³; $R_1 = 0.061$. The data were deposited in Cambridge Crystallographic Data Center (CCDC 204616).
- 12 The reference compounds **5a** and **5b** were synthesized by the Wittig reaction of **3** with corresponding phosphonium salts and followed by bromination and dehydrobromination.

13 Y. Mizuno, T. Aida, and K. Yamaguchi, J. Am. Chem. Soc., **122**, 5278 (2000).